Spontaneous miniature hyperpolarizations affect threshold for action potential generation in mudpuppy cardiac neurons.
نویسندگان
چکیده
Mudpuppy parasympathetic neurons exhibit spontaneous miniature hyperpolarizations (SMHs) that are generated by potassium currents, which are spontaneous miniature outward currents (SMOCs), flowing through clusters of large conductance voltage- and calcium (Ca(2+))-activated potassium (BK) channels. The underlying SMOCs are initiated by a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Perforated-patch whole cell voltage recordings were used to determine whether activation of SMHs contributed to action potential (AP) repolarization or affected the latency to AP generation. Blockade of BK channels by iberiotoxin (IBX, 100 nM) slowed AP repolarization and increased AP duration. Treatment with omega-conotoxin GVIA (3 microM) or nifedipine (10 microM) to inhibit Ca(2+) influx through N- or L-type voltage-dependent calcium channels (VDCCs), respectively, also decreased the rate of AP repolarization and increased AP duration. Elimination of CICR by treatment with either thapsigargin (1 microM) or ryanodine (10 microM) produced no significant change in AP repolarization or duration. Blockade of BK channels with IBX and inhibition of N-type VDCCs with omega-conotoxin GVIA, but not inhibition of L-type VDCCs with nifedipine, decreased the latency of AP generation. A decrease in latency to AP generation occurred with elimination of SMHs by inhibition of CICR following treatment with thapsigargin. Ryanodine treatment decreased AP latency in three of six cells. Apamin (100 nM) had no affect on AP repolarization, duration, or latency to AP generation, but did decrease the hyperpolarizing afterpotential (HAP). Inhibition of L-type VDCCs by nifedipine also decreased HAP amplitude. Inhibition of CICR by either thapsigargin or ryanodine treatment increased the number of APs generated with long depolarizing current pulses, whereas exposure to IBX or omega-conotoxin GVIA depressed excitability. We conclude that CICR, the process responsible for SMH generation, represents a unique mechanism to modulate the response to subthreshold depolarizing currents that drive the membrane potential toward the threshold for AP initiation but does not contribute to AP repolarization. Subthreshold depolarizations would not activate sufficient numbers of VDCCs to allow Ca(2+) influx to elevate [Ca(2+)](i) to the extent needed to directly activate nearby BK channels. However, the elevation in [Ca(2+)](i) is sufficient to trigger CICR from ryanodine-sensitive Ca(2+) stores. Thus CICR acts as an amplification mechanism to trigger a local elevation of [Ca(2+)](i) near a cluster of BK channels to activate these channels at negative levels of membrane potential.
منابع مشابه
Number of K(Ca) channels underlying spontaneous miniature outward currents (SMOCs) in mudpuppy cardiac neurons.
Spontaneous miniature outward currents (SMOCs) in parasympathetic neurons from mudpuppy cardiac ganglia are caused by activation of TEA- and iberiotoxin-sensitive, Ca(2+)-dependent K(+) (BK) channels. Previously we reported that SMOCs are activated by Ca(2+)-induced Ca(2+) release (CICR) from caffeine- and ryanodine-sensitive intracellular Ca(2+) stores. In the present study, we analyzed the si...
متن کاملSpontaneous ryanodine-receptor-dependent Ca2+-activated K+ currents and hyperpolarizations in rat medial preoptic neurons.
The aim of the present study was to clarify the identity of slow spontaneous currents, the underlying mechanism and possible role for impulse generation in neurons of the rat medial preoptic nucleus (MPN). Acutely dissociated neurons were studied with the perforated patch-clamp technique. Spontaneous outward currents, at a frequency of approximately 0.5 Hz and with a decay time constant of appr...
متن کاملProlonged hyperpolarizing potentials precede spindle oscillations in the thalamic reticular nucleus.
The thalamic reticular (RE) nucleus is a key structure in the generation of spindles, a hallmark bioelectrical oscillation during early stages of sleep. Intracellular recordings of RE neurons in vivo revealed the presence of prolonged hyperpolarizing potentials preceding spindles in a subgroup (30%) of neurons. These hyperpolarizations (6-10 mV) lasted for 200-300 ms and were present just befor...
متن کاملAntibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture
Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...
متن کاملSpontaneous opening of T-type Ca2+ channels contributes to the irregular firing of dopamine neurons in neonatal rats.
During early postnatal development, midbrain dopamine (DA) neurons display anomalous firing patterns and amphetamine response. Spontaneous miniature hyperpolarizations (SMHs) are observed in DA neurons during the same period but not in adults. These hyperpolarizations have been shown to be dependent on the release of Ca2+ from internal stores and the subsequent activation of Ca2+-sensitive K+ c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 88 3 شماره
صفحات -
تاریخ انتشار 2002